Mr. Tao Chen is a serial entrepreneur with unique startup experience in both life science and IT industries. Currently at Paragon Genomics, Tao is leading a team of talented scientists and business professionals in developing and commercializing breakthrough targeted sequencing technologies. The Company’s patented target enrichment assay products have been adopted by more than one hundred NGS labs across the globe for various applications such as cancer liquid biopsy, inherited disease testing, drug discovery and agrigenomics. Before starting Paragon Genomics, Tao had over 15 years of technical and business experience in the life science industry, holding leadership positions from R&D, corporate development to product management at various organizations. Read his full bio.

Interview with Tao Chen of Paragon Genomics, Inc.

Q: Once sequencing has been validated as a clinical solution via trusted workflows, and coinciding with the technological developments driving costs lower, we can expect accelerated human genome profiling for clinical Dx. How soon, do you think, will we see accelerated growth and what can we expect?

A: For whole genome sequencing to be a reliable clinical tool, it will largely depend on the cost of sequencing the genome and our ability to interpret the data. Currently, it costs roughly $1000 to sequence the human genome but that usually gives you raw data. In order to make sense of the data, it could take another $500 to analyze and interpret. All the costs mentioned above don’t include the margins that a sequencing lab might charge physicians or consumers. At the same time, the underlying science of genomics also needs to catch up as the sequencing cost continues to drop in the next few years. It might take another 5-10 years for us to really see a mass adoption of whole genome sequencing in the clinical setting when the cost of sequencing and interpreting the human genome significantly drops to $100. Meanwhile, genomics education for healthcare providers can be equally important before they can understand and grapple with this new tool. 

Meanwhile, another similar technology called targeted sequencing has already seen accelerated growth globally, especially in the areas such as non-invasive prenatal testing and cancer testing. The concept of targeted sequencing is basically to only sequence specific and/or clinically relevant regions of the genome. By doing so, it significantly lowers the cost of sequencing and the difficulty of analyzing the data. Paragon Genomics’ cutting-edge CleanPlex® technologies are gaining a lot of traction in the targeted sequencing space.

Q: Tell us more about your organization/company?

A: Paragon Genomics, Inc. is focused on developing breakthrough target enrichment technologies and products for the global NGS community. Our proprietary CleanPlex technology enables NGS customers to develop targeted sequencing assays that are accurate, sensitive, simple, and yet cost effective. Our technology is applicable to many fast-growing NGS segments such as cancer research, liquid biopsy analysis, biomarker discovery, genomics-guided breeding analyses, companion diagnostics, and immunotherapy monitoring.

Founded in 2015, the company is headquartered in Hayward, California. Our goal is to enable precision medicine research and science with our technologies. Our team is composed of industry veterans and academic experts who previously worked with well-known companies and institutions such as Novartis, Applied Biosystems, Siemens Healthcare, Stanford and Harvard.

Q: What patient population are you serving and which services are you specializing in?

A: We don’t serve patients directly. We provide custom panel design service and target enrichment product offerings to researchers and biopharma scientists who are actively working in the fields of oncology, precision medicine and clinical research.

Q: What makes your healthcare/company service unique?

A: We have very unique and patented target enrichment technologies that can be applied to many different areas ranging from cancer liquid biopsy to genomics-guided breeding analyses. Our custom NGS assay design service turnaround time is the shortest in the industry since it usually takes only 2-3 weeks for us to deliver an NGS panel to the hands of a customer.

Q: What is your role at and what excites you about your work?

A: I am CEO & Co-founder of the company. Every day, I am excited and honored to work with a very talented team at Paragon Genomics. We have an interdisciplinary team including molecular biologists, bioinformaticians, computer scientists, marketing and sales specialists. We learn from each other on a daily basis. As a team, we are changing how NGS labs are doing targeted sequencing and ultimately making targeted sequencing easier, faster and more affordable. We also get the chance to work on many interesting custom research projects with academic or translational researchers whose work might further illuminate the underlying mechanism for various diseases such as cancer, cardiovascular and rare diseases.

Q: How will genome profiling change the standard-of-care in the near and/or far future?

A: I can touch a bit on whole genome sequencing and speak in more details to targeted sequencing. If whole genome sequencing becomes much more affordable and its data is easier to interpret perhaps with the aid of AI, I would envision a future society where almost everyone will get his/her whole genome sequenced at birth and this genomic profile will follow that person for his/her entire life. This genomic information will be saved in the cloud together with other medical records of this person and can be retrieved by healthcare providers when needed under an appropriate consent mechanism. This information can guide many medical decisions such as how much warfarin to administer to the patient due to the fact each person with his/her unique genetic profile might metabolize warfarin at a different rate. 

Whole genome sequencing is generally used to obtain people’s germline genetic profile, but not somatic mutations involved in diseases such as cancer. This is where targeted/deep sequencing can play an important role since it can focus on specific regions of the genome such as cancer-related genes and sequence really deep so as to detect low frequency alleles from 5% to even 0.1% in the germline DNA background. With the cancer specific mutations detected, oncologists are then able to prescribe target therapies designed to specifically treat those types of mutations. This is becoming the standard-of-care for cancer right now. The recent exciting development in the cancer testing space is with using liquid biopsy. As some solid tumor cells die in the human body, they often shed their mutated DNA into the blood stream. We call those cancer DNA circulating tumor DNA (ctDNA). Many cancers are diagnosed when they have become incurable. By drawing a tube of a cancer patient’s blood and conducting deep sequencing of the extracted DNA, scientists can potentially detect ctDNA and identify cancer at an early stage when it is still treatable. This will also enable cheaper and easier monitoring of cancer progression as solid tumor tissues can sometimes be both difficult and expensive to obtain. 

Due to its highly sensitive and accurate nature, Paragon Genomics’ CleanPlex UMI technology designed for detecting low frequency mutations truly opens the door for early cancer detection and monitoring of cancer recurrence via “liquid biopsy”.

Q: What are some of the main challenges we need to overcome to see widespread adoption of whole genome profiling across the clinic? How can the community come together to advance its adoption?

A: Mainly cost, data analysis and regulatory approval. See some of the analysis in answers to question 1.

Q: Why should we sequence the entire population, including the healthy ones?

A: When some of the hurdles such cost and data interpretation are eliminated, sequencing data will be really just like basic individual information such as weight, heart rate, etc. Fortunately, the germline genetic information will never change as people get older and it will be the basic information that healthcare providers will need in order to tailor treatment plans or therapies to that individual’s genetic profile. This is the essence of precision medicine. Of course, outside of healthcare, genomic information can be used for other purposes too. For example, there could be future vendors who want to tailor their nutritional or cosmetic products to people’s genetic profiles. It is up to those individuals whether they want to grant those vendors the access right to the entire or a part of their genomic information.

Q: When thinking about the field you are working in, what are some recent breakthroughs that are propelling the field forward and how will they impact healthcare?

A: As I mentioned above, non-invasive prenatal testing and cancer liquid biopsy are the two key breakthroughs in the NGS space. Sequencing is also being applied to many other diseases such as rare diseases, cardiovascular diseases, infectious diseases and so on. For example, there are companies that are developing sequencing assays for detecting more than 1000 different pathogens in one sequencing run as opposed to one or few pathogens in a real-time PCR assay. This can dramatically change how we diagnose and treat infectious diseases. With sequencing being more and more affordable, we will see more advancement in understanding our genome and applying the knowledge to different diseases. In addition to reading the genomes of human or other species, there are technologies such as CRISPR that can now edit genes. This can be especially useful for single-gene diseases where one gene needs to be edited. One key technical issue with CRISPR gene editing is its off-target events which can introduce new mutations into the genome. Targeted DNA sequencing can actually be used as a quality control tool to detect off-target editing events. Dr. Alex Marson, a gene editing expert at UCSF, is using CleanPlex technology for such quality control purposes. At the same time, there are potential ethical issues when it comes to editing human genomes, so we need to be really careful about what we currently can and cannot do with this wonderful technology.

Q: Is there anything else you would like to share with the PMWC audience?

A: At Paragon Genomics, we are really passionate about what we do. The technologies and products we develop are solving key pain points in the target enrichment space. NGS labs and scientists need simpler, faster, and more accurate target enrichment assays for various applications. As we constantly discover new biomarkers, scientists would like to quickly add new content to their existing NGS panels or come up with totally new panels. Many existing target enrichment technology providers fail to deliver quality custom panels in a timely fashion. At Paragon Genomics, we can get a high-quality custom NGS panel to the hands of a customer within 2-3 weeks, which was unheard of in the industry. We are also partnering with bioinformatics software companies such as SOPHiA GENETICS to provide a whole solution to our customers. Ultimately, our goal is to enable precision medicine research and science. I look forward to the discussions at PMWC!

Interview with Shannon J. McCall of Duke University

Q: Genomic medicine is entering more hospitals and bringing with it non-invasive technology that can be used to better target and treat diseases. What are some key milestones that contributed to this trend?

A: After several years of the promise of precision medicine and abundant clinical trial work, the recent FDA approval of solid-tumor-agnostic therapies dependent on molecular biomarkers has catapulted genomic/precision medicine into the standard-of-care for late stage cancer.

Read More

Interview with Tao Chen of Paragon Genomics, Inc.

Q: Once sequencing has been validated as a clinical solution via trusted workflows, and coinciding with the technological developments driving costs lower, we can expect accelerated human genome profiling for clinical Dx. How soon, do you think, will we see accelerated growth and what can we expect?

A: For whole genome sequencing to be a reliable clinical tool, it will largely depend on the cost of sequencing the genome and our ability to interpret the data.

Read More

Call for Action: The Time is Now for Patient Data Interoperability

The use of new technologies can provide breakthrough benefits for both patients and providers. However, with increased sharing comes increased risks to the security and privacy of patient data. Currently data is being accumulated across many organizations and initiatives but is often either siloed or simply not accessible. Researchers suggest that patient education tactics can help quell security concerns during patient data sharing.

Read More

Interview with Andrew Magis of Arivale

Q: Once sequencing has been validated as a clinical solution via trusted workflows, and coinciding with the technological developments driving costs lower, we can expect accelerated human genome profiling. How soon, do you think, will we see what kind of accelerated growth?

A: I think the acceleration has already begun. Large sequencing projects such as NHLBI Trans-omics for Precision Medicine (TOPMed) and NIH All of Us are sequencing 150,000 and 1 million individuals, respectively.

Read More

Interview with Emily Leproust of Twist Bioscience

Q: NGS is enhancing patient care through improved diagnostic sensitivity and more precise therapeutic targeting. Prominent examples include cystic fibrosis and cancer. What other clinical areas NGS will most likely to change the standard-of-care in the near future?

A: Preventative medicine – using genetic data to identify traits that have the potential to cause harm in the future.

Read More

Interview with Michael Phelps of UCLA

Q: You invented the PET scanner that changed the lives of millions of patients with cancer, brain and heart diseases. What are the potential benefits to patients of combining PET with radio-ablation technologies?

A: PET provides imaging assays of the biology of disease in many diseases today.

Read More

Interview with Daniela Ushizima of Lawrence Berkeley National Lab

Q: Artificial intelligence (AI) techniques have sent vast waves across healthcare, even fueling an active discussion of whether AI doctors will eventually replace human physicians in the future. Do you believe that human physicians will be replaced by machines in the foreseeable future? What are your thoughts?

A: I really hope that human physicians will not be replaced by machines in the foreseeable future.

Read More

Interview with Amy Compton-Phillips of Providence St. Joseph Health

Q: Genomic medicine is entering more hospitals and bringing with it non-invasive technology that can be used to better target and treat diseases. What are some key milestones that contributed to this trend? What technological advancements are driving this change?

A: Genomic medicine is poised to move quickly from the research realm into integration with healthcare delivery, but there is always a time lapse between technology advances and what we do with those advances.

Read More

Interview with James Taylor of Precision NanoSystems

Q: There are various new, emerging technologies that bring us closer towards a cure for life-threatening disorders such as cancer, HIV, or Huntington’s disease. Prominent examples include the popular gene editing tool CRISPR or new and improved cell and gene therapies. By when can we expect these new technologies being part of routine clinical care?

A: Patients are already receiving treatment using novel gene and cell therapies.

Read More

Interview with Julie Eggington of Center for Genomic Interpretation

Q: Together with Robert Burton you founded the Center for Genomic Interpretation (CGI), a non-profit organization. Can you tell us more about CGI and the mission behind it?

A: CGI’s mission is to drive quality in clinical genetics and genomics. CGI works primarily with laboratories, health insurance payers, clinicians, and patients/consumers.

Read More

Interview with Deven McGraw of Ciitizen

Q: Patient healthcare data aggregation and analysis is seen as both the panacea for tremendous breakthroughs in precision medicine and as one of its biggest challenges. Are both true and how so?

A:Yes, both are true. Achieving breakthroughs in precision medicine will require a lot of data – and yet it is often difficult for researchers to amass all of the data needed to advance precision medicine discoveries.

Read More

Breaking News: CMS Takes Actions to Lower Prescription Drug and Other Healthcare Costs – Seema Verma Speaking @PMWC19

The cost of healthcare has been rising at an annual rate of 7% be it company-sponsored health insurance, public insurance such as Medicare and Medicaid, or private insurance. As such, healthcare was top of mind for many individuals this 2018. In the November midterm election many items related to healthcare such as Medicaid expansion, provider pay and indirect effects on the Affordable Care Act could be found on the ballot.

Read More

Did You Catch All 6 of These Big Genomic Medicine Headlines in Recent Weeks?

Genomic sequencing, the driver of modern genomic medicine has come a long way in a short time, and its potential to continue driving innovations in precision medicine is enormous. PMWC 2019 Silicon Valley Jan. 20-23 in the Santa Clara Convention Center will focus on topics that are in the headlines and on everyone’s minds, in NGS and in precision medicine.

Read More

Interview with Christopher Hopkins of Nemametrix

Q: There are various new, emerging technologies that bring us closer towards a cure for life-threatening disorders such as cancer, HIV, or Huntington’s disease. Prominent examples include the popular gene editing tool CRISPR or new and improved cell and gene therapies. By when can we expect these new technologies being part of routine clinical care?

A: We should all be working towards integrating these technologies into routine patient care as quickly as possible, because genomic medicine has the capacity to make profound impacts now.

Read More

Interview with Kristine Ashcraft of YouScript

Q: There are various new, emerging technologies that bring us closer towards a cure for life-threatening disorders such as cancer, HIV, or Huntington’s disease. Prominent examples include the popular gene editing tool CRISPR or new and improved cell and gene therapies. By when can we expect these new technologies being part of routine clinical care?

A: It’s certainly hard to predict, but our goal is to see precision medicine tools in the hands of most providers in the next five years.

Read More
Johns Hopkins
University Of Michigan

The Precision Medicine World Conference (PMWC), in its 16th installment, will take place in the Santa Clara Convention Center (Silicon Valley) on January 20-23, 2019. The program will traverse innovative technologies, thriving initiatives, and clinical case studies that enable the translation of precision medicine into direct improvements in health care. Conference attendees will have an opportunity to learn first-hand about the latest developments and advancements in precision medicine and cutting-edge new strategies and solutions that are changing how patients are treated.

Agenda highlights:

  • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
    • AI & Data Science Showcase
    • Clinical & Research Tools Showcase
    • Clinical Dx Showcase
    • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
    • Digital Health/Health and Wellness
    • Digital Phenotyping
    • Diversity in Precision Medicine
    • Drug Development (PPPs)
    • Early Days of Life Sequencing
    • Emerging Technologies in PM
    • Emerging Therapeutic Showcase
    • FDA Efforts to Accelerate PM
    • Gene Editing
    • Genomic Profiling Showcase
    • Immunotherapy Sessions & Showcase
    • Implementation into Health Care Delivery
    • Large Scale Bio-data Resources to Support Drug Development (PPPs)
    • Microbial Profiling Showcase
    • Microbiome
    • Neoantigens
    • Next-Gen. Workforce of PM
    • Non-Clinical Services Showcase
    • Pharmacogenomics
    • Point-of Care Dx Platform
    • Precision Public Health
    • Rare Disease Diagnosis
    • Resilience
    • Robust Clinical Decision Support Tools
    • Wellness and Aging Showcase

Agenda highlights:

    • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
      • AI & Data Science Showcase
      • Clinical & Research Tools Showcase
      • Clinical Dx Showcase
      • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
      • Digital Health/Health and Wellness
      • Digital Phenotyping
      • Diversity in Precision Medicine
      • Drug Development (PPPs)
      • Early Days of Life Sequencing
      • Emerging Technologies in PM
      • Emerging Therapeutic Showcase
      • FDA Efforts to Accelerate PM
      • Gene Editing / CRISPR
      • Genomic Profiling Showcase
      • Immunotherapy Sessions & Showcase
      • Implementation into Health Care Delivery
      • Large Scale Bio-data Resources to Support Drug Development (PPPs)
      • Microbial Profiling Showcase
      • Microbiome
      • Neoantigens
      • Next-Gen. Workforce of PM
      • Non-Clinical Services Showcase
      • Pharmacogenomics
      • Point-of Care Dx Platform
      • Precision Public Health
      • Rare Disease Diagnosis
      • Resilience
      • Robust Clinical Decision Support Tools
      • Wellness and Aging Showcase
  • Luminary and Pioneer Awards, honoring individuals who contributed, and continue to contribute, to the field of Precision Medicine
  • 2000+ multidisciplinary attendees, from across the entire spectrum of healthcare, representing different types of companies, technologies, and medical centers with leadership roles in precision medicine
Get Updates
Sign up for occasional updates on upcoming conferences, news, and other information.
We respect your privacy and will never share your email with anyone.
Something went wrong, please verify your input.
Thank you for signing up!

Don't Miss Important Precision Medicine Updates

PMWC is the most comprehensive precision medicine conference. To receive the lastest news and updates from the field, subscribe to the newsletter here.

You have Successfully Subscribed!