Speaker Profile

Ph.D., Professor of Chemistry and Molecular and Cell Biology, University of California, Berkeley

Jennifer Doudna, Ph.D. helped launch an ongoing revolution in the fields of molecular genetics and genomics with the monumental discovery of CRISPR-Cas9. This simple to use technique can alter the DNA of any organism using RNA-programmed DNA cleavage, much like a film editor cuts a piece of film and splices in new frames. CRISPR-Cas9 technology is being used in laboratories around the world to advance biological research and this fundamental technology promises to lead to new therapeutics for treating and curing, human disease. This is just the latest chapter in a highly productive career of scientific discovery. Doudna has devoted her career to understanding the function of catalytic and other non-protein-coding RNAs. Using structural biology and biochemistry, Doudna’s work deciphering the molecular structures and biochemical activities of RNA enzymes (ribozymes) and other functional RNAs, along with their protein-binding partners, has shown how these molecules carry out complex activities in cells. Dr. Doudna has been an investigator with the Howard Hughes Medical Institute since 1997. In 2000, while holding a professorship at Yale, she was honored with the Alan T. Waterman Award, given annually by the National Science Foundation to an exceptional young scientist. In 2002 she accepted a faculty position at University of California, Berkeley where CRISPR-Cas9 was discovered. Jennifer Doudna earned her Bachelor of Arts degree in Chemistry from Pomona College in 1985, her Ph.D. in biochemistry from Harvard University, and she conducted her postdoctoral work at the University of Colorado, Boulder.


The Genome Engineering Revolution
Facile genome manipulation using precision DNA recognition is transforming biology. I will discuss how the bacterial CRISPR adaptive immune system was harnessed as a powerful genome engineering tool, enabling remarkable developments using this technology to modify, regulate or visualize genes in a wide variety of cells and organisms.

Session Abstract – PMWC 2017 Silicon Valley

Session Synopsis: Since its launch, the disruptive CRISPR technology has been widely adopted and is now on a path to transform biological research with the promise of new therapeutics for both treating and curing human diseases. This session will cover new CRISPR products and different applications that harness the power of the CRISPR technology.